An Interesting Approach to Bis-calix[5]arene Analogue from Calix[6]arene

Hai Bing LI, Yuan Yin CHEN*, Shu Ling GONG
Department of Chemistry, Wuhan University, Wuhan 430072

Abstract

By 1,4-bridging of p-tert-butylcalix [6] arene with 2,6-bis (bromomethyl)-4-methylanisole, a new type of bis-calix [5] arene analogue was obtained in high yield..

Keywords: Bis-calix [5] arene, calyx [6] arene, bridging.

Calix [n] arenas $\{\mathrm{n}=4,6$ or 8$\}$ are easily prepared from formaldehyde and para-substituted phenols via cyclic condensation under alkaline conditions in one step. It is not surprising that the calyx $[\mathrm{n}]$ arene $(\mathrm{n}=4,6,8)$ chemistry has been developing very rapidly during the latest 20 years ${ }^{1}$. However, it is not the case for calixarenes with odd benzene rings (for example, $\mathrm{n}=5$). The yield of p-tert-butylcalix [5] arene synthesized in one-step from p-tert-butylphenol and formaldehyde was as low as 15% in the Gutsche's improved procedure with difficulty ${ }^{2}$. Only one example of bis-calix [5] arenes was reported by Fukazawa et al. in 1998 as compared with plenty of the papers concerning bis-calix [4] arene. The bis-calix [5] arene exhibited outstanding coordinated ability toward [60] fullerene ${ }^{3}$.

Here, we wish to report an interesting route to synthesize a new type of bis-calix [5] arene analogue 2 from easily obtained p-tert-butylcalix [6] arene $\mathbf{1}$ and 2, 6-bis (bromomethyl)-4-methylanisole (BBA). To the DMF solution of $\mathbf{1}, 5$ equivs NaH was added at room temperature, followed by 1.1 equivs of BBA^{4}, the mixture was stirred at $70^{\circ} \mathrm{C}$ for 16 h . The excess of NaH was quenched by addition of a minimal quantity of methanol (caution!). Distilling off the solvent, the residue was treated with $\mathrm{HCl}(10 \%$, v / v) and then extracted with CHCl_{3}. After recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}$, compound 2 was obtained as white solid in 75% yield, $\mathrm{mp} 217-220^{\circ} \mathrm{C}$. Its conformation was shown in Figure 1. Compound 2 could be also obtained with the system of $\mathrm{K}_{2} \mathrm{CO}_{3} /$ benzene, but the yield was down to 55% and column chromatography was needed.

Compound 2 gave satisfactory elemental analysis results and exhibited the expected molecular ion peak in MS. In the ${ }^{1} \mathrm{H}$ NMR spectrum, two singlets for the tert-butyl groups (2:1), two pairs of doublets (1:2) for the methylene protons and a broad singlet for the oxymethylene groups of the bridge and a singlet for the hydroxyl protons can be assigned. The $\mathrm{C}_{2 \mathrm{v}}$ symmetrical $(\mathbf{u}, \mathbf{u}, \mathbf{u}, \mathbf{u}, \mathbf{u}, \mathbf{u})$ conformation of $\mathbf{2}$ at room temperature

[^0]is easily deduced from the methylene protons in calixarene skeleton showing two pairs of doublets in a ratio of 1:2. It is interesting to note that the signals were changed below $0^{\circ} \mathrm{C}$. There are three singlets for the tert-butyl hydrogen atoms (1:1:1), four pairs of doublets ($1: 2: 2: 1$) in the diaryl-methylene region, two doublets for the oxymethylene groups of the bridge (1:1), and two singlets (1:1) for the hydroxyl groups indicating existence of a C_{s} symmetrical conformation. This phenomenon can be explained by different orientations of the phenyl ring in the bridge (Figure 1). The similar phenomenon was observed by U. Lüning et al. ${ }^{5}$.

Figure $1 \mathrm{C}_{\mathrm{s}}$ and $\mathrm{C}_{2 \mathrm{v}}$ conformations for a $(\mathbf{u}, \mathbf{u}, \mathbf{u}, \mathbf{u}, \mathbf{u}, \mathbf{u})$-A, D-bridged p-tertbutylcalix [6] arene 2

Acknowledgment

Financial supports from the National Natural Science Foundation of China and Hubei province are gratefully acknowledged.

References and Note

1. (a) C. D. Gusche, Calixarenes, Royal Society of Chemistry, Cambridge, U.K., 1989. (b) J. Vicens, V. Bohmer, Eds., Calixarenes: A Versatile Class of Macrocyclic Compounds, Kluwer Academic, Dordrecht, 1991. (c) S. Shinkai, Tetrahedron, 1993, 49, 8003. (d) V. Bohmer, Angew. Chem., Int. Ed. Engl., 1995, 34,713.
2. D. R. Stewart, C. D. Gutsche, Org. Prep. Proceed. Int., 1993, 25, 137.
3. T. Haino, M. Yanase, Y. Fukazawa. Angew. Chem. Int. Ed. Engl., 1998, 37, 997.
4. K. E. Koenig, G. M. Lein, P. Stuchler, T. Kaneda, D. J. Cram, J. Am. Chem. Soc., 1979, 101, 3552.
5. U. Lüning, H. Ross, I. Thondorf, J. Chem. Soc., Perkin Trans. 2, 1998, 1313.
6. Analytic data of compound $2{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K} \delta\right): 1.21\left(\mathrm{~s}, 36 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $1.24\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 3.42\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=13.5 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 3.56(\mathrm{~d}, 2 \mathrm{H}$, $\left.\mathrm{J}=12.0 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 4.14\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=13.5 \mathrm{~Hz}, \operatorname{ArCH}_{2} \mathrm{Ar}\right), 4.70(\mathrm{~d}$, $\left.2 \mathrm{H}, \mathrm{J}=12.0 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 5.74$ (bs, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 6.94 (bs, 4H, ArH), 7.09 (bs, 4H, ArH), $7.16(\mathrm{~s}, 4 \mathrm{H}, \mathrm{ArH}), 7.21(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 8.02(\mathrm{~s}, 4 \mathrm{H}, \mathrm{ArOH}) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 270\right.$ K ס) $1.16\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.22\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.26\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.43(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{ArCH}_{3}\right), 3.82\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.2 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 3.90\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.9 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 4.03(\mathrm{~d}, 2 \mathrm{H}$, $\left.\mathrm{J}=16.2 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 4.14\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=14.1 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 4.19(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.2 \mathrm{~Hz}$, $\left.\mathrm{ArCH}_{2} \mathrm{Ar}\right), 4.24-4.63\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArOCH}_{3}\right.$ and $\mathrm{ArCH}_{2} \mathrm{Ar}$ and $\left.\mathrm{CH}_{2} \mathrm{O}\right), 5.62(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.6 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{O}$), $6.43,6.62,6.85,6.92,7.09,7.18$ (s each, 2 H each, ArH), 7.42 (d, 2 H , bridge ArH), 8.25, 8.36 (s each, 2 H each, ArOH). MS (FAB): $m / z .1,118\left(\mathrm{M}^{+}\right)$. Anal. calcd. for $\mathrm{C}_{76} \mathrm{H}_{94} \mathrm{O}_{7}$ (\%): C, 81.53; H, 8.46; found: C, 81.55; H, 8.42.
Received 20 June, 2001

[^0]: * E-mail: yychen@whu.edu.cn

